- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000101000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Raffaelle, Patrick R (1)
-
Raffaelle, Patrick R. (1)
-
Shestopalov, Alexander A. (1)
-
Wang, George T. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The fabrication of 2D devices with micro/nano-scale features often rely on assembly from a top-down perspective, where the design emphasis is on the removal of material to generate surface features. Common “top-down” approaches to fabrication often include “pattern and subtract” techniques which require energy-intensive processing and result in a high volume of material waste of substances such as photoresists, etchant, and developers. In addition to high energy and material dissipation, traditional “top-down” approaches have also struggled to adapt to the continuous downsizing of critical dimensions of 3D device components. Thus, instead of generating devices from a “top-down” perspective, there has been a push over the last two decades to instead leverage the intrinsic differences in chemical behavior between surface species, such that feature deposition selectively begins at the surface and grows vertically in an additive fashion via reaction from the “bottom-up”. Here, I will evaluate the ability of different small molecule and atomic layers to enable selective deposition on a silicon substrate. Specifically, I will be investigating a carbenylated organic molecule, a perfluorinated amine, and atomic halogen species on their ability to inhibit deposition atomic layer deposition (ALD) of a metal oxide. When paired with a hydrolyzed surface (which promotes metal oxide growth), these inhibiting species may be used to form complementary resist systems which can enable area-selective ALD (AS-ALD) on a surface. Another primary consideration in “bottom-up” approaches to feature fabrication is the ability to pattern these small molecule and atomic surface layers such that they form a template for selective growth. To this end, I will explore using ultrafast laser patterning and contact transfer printing to selectively deposit or alter these surface layers to generate complementary surface domains that can serve as a foundation for a AS-ALD platform.more » « less
-
Raffaelle, Patrick R.; Wang, George T.; Shestopalov, Alexander A. (, ACS Applied Materials & Interfaces)
An official website of the United States government

Full Text Available